
SOME REMARKS ON NUMBER THEORY. II. 
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A B S T R A C T  

Like the previous paper of the same title [5] this note contains di~,onnected 
remarks on number theory. 

1. Bellman and Shapiro in one of their papers l'l] prove among others the 
following result: Denote by Q(a, b) the number of squarefree integers n satisfying 
a ~ n < b and let A(n) be a strictly monotone function tending to infinity to- 
gether with n. Then if we neglect a sequence n~ of  density 0 we have 

(1) Q(n, n + A(n)) = (1 + o(1)) 6 A(n). 

We will prove a more general theorem which will show that (1) remains true 
if the monotonicity of A(n) is no longer required. In fact we will prove 

TtmORBM 1. Let f ( k )  be a real valued number-theoretic function satisfying 

1 
(2) lim -=- ~ f ( k ) =  ~ (o~ # 4-oo). 

n : ,,,~ M k : l  

Assume further that to every ~l > 0 there is a g(tl) so that for every l > g(~) 
and every n > 0 

(3) 
1 l-1 

- -  ~, f ( n + k ) < o t + t  1 . 
l k = O  

Then to every e > 0 and  6 > 0 there is an h(e,6) so that for all but ex integers 
n < x  we have for  every l > h ( e , 5 )  
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(4) ~ - 6  < ]~ f ( n + k ) < ~ + 6 .  
k---O 

Before we give the simple proof we make a few remarks. By the same method 
we could that if for every l > g(~/) and every n > 0 

(3') 1 1-1 
- -  Z / ( n + k ) > ~ - t /  

k=O 

then (4) holds. 
It is easy to see that our Theorem implies that if for every A(n) --, oo 

1 a(.) 
~, f ( n + k ) < o ~  lira sup A ~  k = 0 

~----00 

then for almost all n _<_ x (i.e. all n neglecting a sequence of density O) 

1 atn) 
(5) lim Y_, f ( n  + k) = ~. 

n=oo A - - ~  k = o  

Now we prove our Theorem. The upper bound in (4) is trivial since it follows 
from (3) so it is enough to prove the lower bound. Let us assume that (4) does 
not hold, then there is an ~ > 0 and 6 > 0 so that for every t there are arbitrarily 
large values of x so that the number of integers n I -<_ x for which there is an l~ > t 
satisfying 

1 l l - 1  
- -  ~, f ( n l + k ) < - o ~ - 6  (6) li ~=o - 

is greater than ex. We shall now show that for ~/< ½ e6, t > g(q) (6) contradicts (3). 
To see this let mt be the largest integer for which 

(7) 1 m,-.,-~ f ( t )  <- ct -- 6. 
m i -  ni t=al 

By our assumption and by (2) 

(8) g(~) < m ,  - n~ < o o .  

Consider now the sequence of intervals (n~, rn~) (i.e. n, ~ x < mz). There clearly 
exists a subsequence of disjoint intervals (n~,,m~,), r = 1,2, ... so that each n~ is 
covered by one of the intervals (n~,,m~,), r = 1,2, . . . .  To see this put nl, = n, ,  
m ,  = ms and assume that the intervals (n~,, m 0 r < s have already been con- 
structed. Let n~ be the least n~ greater than m~,(rnz can not be one of the n's since 
by (6) this would contradict the maximality property of rn~,). Put ni = n~. ms = mr. 
and this sequence of intervals clearly has the required properties. 

By our assumption ~ , , ~ ,  1 > sx holds for infinitely many x, hence if rnt is 
the'  mallest ra,, _>-x we evidently have 
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(9) ~ (m,. - n, ) > em, .  
r = l  

Put ms. -  n~. = ~t,. From (9) we have either 

1 1 
Z~ ~, > -~em,. or )22 ~, > ~ m , .  

where in )21, r-= 1 (rood2) and r < s, in ~2, r -  0 (rood 2), and r ~ s. Without 
loss of generality assume 

1 
(I0) )21 ~, > T e ml~. 

By (2) we have 
mij 

(II) )2 f(k)=(l+o(1)czm,= ~,'+ Y.," 
k=nl 

where in Z' 

-I 

and in )2" 

We have from (7) 

(12) 

s - 3  
m~,~+ t < t < ni, j+:  0 ~ j  ~ 2 

)2'-<__(a-a) )2~ a,. 

We evidently have by (8) 

flj = nl2~+ , - mhj+, > mh~ - n~2 j > g(~/). 

Thus by (3) 

(s-3v2 ( ) 
(13) )2"<(u+~/ )  )2 f l j = ( u + n )  m ~ . -  ~ u, + 0 ( 1 )  

j=O 1 

s i n c e  

(s-3/)2 
)21 ~, + )2 pj = m,, - nl = m~. + O(I). 

j=O 

Thus from (11), (12), (13) and (10) we have 

(1 + o ( 1 ) ) e m . =  )2 f (k)  < ( e + ~ ) m . - ( ~  +6)  I~1 e , +  0(1) 
k----'nl 

1 
N (e + 7) m~. - ~-e6m~. + 0(1) 
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an evident contradiction if t/ < ½e~. This completes the proof of our 
Theorem. 

Corollary. Let as < a2 < "'" be any sequence of integers and let bl < b2 < "" 
the sequence of integers not divisible by any as. Assume that the b's have density ~. 
Then if  U(n) ~ ~ together with n we have for almost all n and every l > U(n) 

lim B(n + I ) -  B(n) (B ) 
l = ~ (m) = ]E 1 . 

l l~aO b l < r a  

The corollary easily follows from our Theorem. Let f (n)  = 1 if  n is a b and 
f(n) = 0 otherwise. To prove our corollary we only have to show that our f (n)  
satisfies (3). Denote by ~k the density of integers not divisible by any at, 1 < i < k. 
Evidently ~k exists and ~s --> ct2 >- "" .  It is known [4] that if the b's have density 
then 

(14)  l i m  ~tk = ~t 
k - - - ~  

Let fk(n) = 1 if n~0(moda~) ,  1 < i < k and fk(n) = 0 otherwise. Clearly fk(n) 
>f(n). A(n) is periodic mod[as, '",ak] thus A(n) clearly satisfies (3) with ~k 
replacing ~, hence finally by (14)f(n) satisfies (3). If  ~ 1/ai < oo the proof of (14) 
is simple and direct and we do not need [4]. 

It is also easy to see that our Theorem applies forf (n)  = a(n)/n orf(n)  = ~b(n)/n. 
In fact it applies to every multiplicative function f(n) > 1 which satisfies 

Z f(p) -- 1 - - < o o  
P 

we leave the details to the reader [6]. On the other hand our Theorem does not 
seem to imply Theorem 4 of [7]. 

2. In one of their papers Chowla and Vijayaraghavan [3] state that to every 
> 0 there is an A so that if as < "" < a~ < x is a sequence of integers satisfying 

k 1 
- _-> A, (at, a j) = 1 

~=I at 

then the number of integers n < x not divisible by any a is < 8x. 
This result indeed easily follows by Brun's method i8]. The number of integers 

n < x, n ~ 0(rood ai), 1 < i < k is by Brun's method [8] less than cle-ax(cl is an 
absolute constant independent of al, "",ak). 

The following question seems to be of some interest: 
Let al  < "" be of any sequence of integers satisfying ~ t l  ~at < A. Denote by 

f (a s , ' " ; x )  the number of integers not exceeding x not divisible by any at. Put 

F(A; x) = minf(al, . . .  ; x) 
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where the minimum is to be taken over all sequences satisfying ~ 1  ~as < A. 
How large is F(A; x) and which sequence al < ... gives the minimum? Let p, 
be the largest prime < x and p, > p,_ ~ > . . .  the sequence of primes < x. Define i by 

~2 1 < A <  ~ 1 
j = l  PJ j= i -1  Pj 

It seems to me that perhaps F ( A , x ) = f ( P t  . . . ,p , ;x)  or that at least 

(15) F(A; x) = (1 + o(1))f(p, ,  . . . ,p , ;x) .  

It easily follows from the results of de Bruijn [2] that for x >  xo(A) and 
A > A o  (exp z = e  ~) 

F(A; x) < f (P i , ' " ,  P,; x) < x exp( - e 'i) . 

I do not see how to prove (15) and in fact I cannot even show that for some fixed 
> 0 (e independent of A and x) 

F(A, x) > ef(p,  ... p,; x), 

in fact I have no satisfactory lower bound for F(A; x). 
3. We prove by Brun's method [8] the following 

Theorem 2. To every Ca there is a c2 = c2(cl) so that if a 1 < ... < ak <~n, 
k > cln is any sequence of  integers then 

1 
E1 "-d > c2 log n 

where in 531 the summation is extended over all the integers d which are divisors 
of some a~. 

Let 8 = ~(Cl) be sufficiently small and write 

f~(m) =p ~l lm f  , p < n" 

where f l  I m means P'I m, f +  l fro ,  dl < ' "  < d, be the integers f~(a,), i = 1,-.., k. 
To prove our Theorem it will clearly suffice to show 

(16) 

We need two lemmas. 

t=1 ~'~ > c2 l o g n .  

Lemc~x 1. Let e < el/8. Then for  n > no the number S of integers m ~_ n 
f o r  which fs(m)> n 112 is less than cln/2. 
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We evidently have by the well known result ~ logp = log x + 0(1) 
p<x  P 

n 

nSlZ < l-I f , (m)  < I I  p , l ,+, l , ,+. . .  
m = l  p<n e 

= I-I P " / ' "  < exp 2en log n. 

Thus S < 48n < cln/2, which proves the lemma. 

LEmMA 2. Let u < n t/2. The number of integers m < n for which f , (m) = u 
is less than %n/u8 logn. 

The integers m < n for which f , (m) = u are of the form ut where 

(17) t < n ,  t ~  0(rood P), P < n+ 
U 

By Brun's method the number of integers t satisfying (17) is for u < n 1/2 less 
than 

c,, u 1 -- < ca/eulogn 
p_  e 

which proves the Lemma. 

By Lemma 1 the number of a's with fe(ai) <- n i/2 is greater than c 1 n ]2. Thus 
we have for these a's by Lemma 2. 

hence 

can ~ 1 
c ln /2  < ~ |=1 "~i 

i= ~'~ >2-~a l°gn 

which proves (16) and hence Theorem 2. 
I have no reasonable estimate for cz as a function of cx. 
4. Straus asked me the following question: 

What is the maximum number of integers al < "" < ak $ x no two of which are 
relatively prime but every three of them are relatively prime? The question is 
perhaps a bit artificial but it seems to me of some interest that a simple and fairly 
precise answer can be given. Put max k =f (x) ,  then 

1 ) log x 
(18) f ( x )  = + o(1) loglog x 
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To prove (18) observe that i f a l  < "" < ak < X satisfies for every 1 < it < i2 <lk, 
(a~,aj) 4 1 and for every 1 < J r  <J2  <J3 < k, (ajl,aj,,aj3) = 1 then to every 
1 -< i < j < k there corresponds a prime p~.j so that P,,Jl a,,p,.j laj and for every 
other r < k p~,jfa,, hence the p~j are distinct for distinct 1 < i < ]  < k and we 

evidently have 

(19) xk > I~ as _ > I I  P,2J ~ - q, 
| = 1  l<_t<j<_k 

where 2 = ql < "'" are the sequence of  consecutive primes. From the prime 
number theorem we have 

d) 
(20) 1-I q, = exp((1 + o(1))kZlogk 

r = l  

Hence from (19) and (20) we have klogx > ( 1  + o(1)) 2k 2 logk  or 

log x 
k < (1 + o(1)) 21oglogx " 

To complete the proof  of  (18) we now show that for every ~ > 0 there is an x0 
so that if x > xo(8) we can construct integers a t  < "" < ak < x, 

log x 
k > (1 - ~) 2 log log x 

so that no two a 's  should be relatively prime but every three of  them 
are relatively prime. Put k =  [ ( 1 -  8) logx /21og log x] and let q t < ' " < q t ~  be 
the first (k) consecutive primes. Form a symmetric matrix [ut J l of  size k from 
these primes the diagonal elements are all 1 - s. at is the product of the primes 
in the i-th row each a~ is the product of  k - I primes by the prime number theorem 
for every fixed 8 and x > xo(e) ai < qt'~) < x. (a~, ai) is the prime u~,j = uj.~ and 
( a ,  a~, a,) is clearly always one. 

Let r be fixed and x large. Denote by f,(x) the largest value of  k for which 
there is a sequence at  < "" < ak < X SO that no r of  them are relatively prime, 
but  every r + 1 of  them are relatively prime. In (18) we showed 

f 2(x) = ( l  + o(1)) logx/log log x. 

By the same method we can prove 

.)1,.-1 :  ogx 
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